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Subject matter relatedness logic, S, is designed to model the idea that the
subject matter of propositions should be taken into account in reasoning,
where the notion of the subject matter of a proposition is taken as primitive.
In this paper we extend S by considering how the subject matter of a
proposition can depend on the subject matter of its parts when propositions
are parsed in predicate logic.  This is an example of a general method for
how to incorporate a semantic aspect of propositions other than truth and
reference into a predicate logic.

The propositional logic S
The propositional logic S was first presented in Epstein, 1979.  It was further
developed with a strongly complete axiomatization and clearer motivation in
Epstein, 1990, from which this brief description is culled.

A subject matter relatedness model is:

                                      L(Ï, → ,  p0, p1, . . . )

                                                 realization

{p0 , p1 , . . . , complex propositions formed from these using Ï, → }

                                        v, r, and truth-tables

                        { T , F}

Here p0 , p1 , . . .  are the realizations of p0 , p1, . . . , which are taken to be
atomic.  They are English language sentences; from a realist perspective these
would be understood as corresponding to or representing abstract propositions.
Then v is an assignment of truth-values to the atomic propositions.  And R is a
symmetric, reflexive relation on pairs of atomic propositions meant to be
understood as p has subject matter overlap with q.  The extension of R to all
complex propositions is given inductively by the S-conditions:

R1.   R(A, A)
R2.   R(A, B)  È  R(ÏA, B)

1  The work here was originally developed by the authors when Epstein was an Exchange
Scholar of the U. S. National Academy of Sciences to the Polish Academy of Sciences in Warsaw
in 1981.  It was the subject of a series of lectures by Epstein to the Logic Group at Iowa State
University in 1982, when the first draft of this paper was written.  We are grateful to Roger
Maddux, Donald Pigozzi, Howard Blair, and William Robinson who offered much help in
developing these ideas at that time.  This research was earlier reported on in Krajewski, 1986.  
The present paper is a revised version of a talk given at the 3rd Conference on Logic and
Reasoning of the Advanced Reasoning Forum, Berkeley, 2001.
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R3.   R(A, B)  È  R(B, A)
R4.   R(A, B→ C)  È  R(A, B)  or  R(A, C)

Lemma 1 a. The only transitive relatedness relation is the universal relation.
b. For any relatedness relation R ,

R(A, B)  È  for some pi in A, some pj in B, R(pi , pj).

Proof   For part (a), note that for any A, B, both R(A, A→ B) and R(A→ B, B).
So if R is transitive, R(A, B).  Part (b) can be proved by double induction on the
length of the formulas A and B.2 Ÿ

Thus, any symmetric, reflexive relation r on atomic propositions determines
a relatedness relation R on all formulas via the condition of Lemma 1.b.

Then  v is extended inductively to all propositions by using the classical
table for Ï and the table for the related conditional for → , namely:

    

A B A BR( , ) A→ B

any value fails

holds

F

T T T

T F F

F T T

F F T

A proposition A of the semi-formal language is true  in the model if 
v(A) = T ,  false if v(A) = F.  We refer to a model as M = <v,R>  and write MÅA
for v(A) = T .  Letting capital Greek letters stand for collections of propositions
(atomic or compound), we define the semantic consequence relation of S .

ΓÅSSSS A  iff  for every model M, if for every B in Γ , MÅB, then MÅA

Since the universal relation can be a relatedness relation, the logic S is 
a sublogic of the classical propositional logic: If ΓÅS A then ΓÅclassicalA.

In S we define the following connectives:

R(A , B) ≡Def A→ (B→ B)

A∧ B ≡Def Ï(A→ (B→  Ï((A→ B)→ (A→ B))))

Then:

<v,R>Å R(A , B)  È  R (A, B)

<v,R>Å A∧ B  È  <v,R>Å A and <v,R>Å B

The connective  ∨   can be defined from Ï and →  as either classical
disjunction or as relatedness disjunction.  Since that decision is inessential and
distracting, we will not consider disjunction in the discussions below.

Using these definitions a strongly complete axiomatization of S is given in
Epstein, 1990.  That is, letting ÍS  stand for the syntactic consequence relation:  

For every Γ , A,  ΓÅSA È ΓÍSA.

2  See p. 99 of Epstein, 1990.
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Instead of starting with a subject matter relatedness relation, we can take the
notion of a subject matter as primitive and then define two propositions being
related if they have some subject matter in common.  We first postulate a set of
topics that we assign to the propositions under consideration and have:

A set of topics  S ≠ ∅ .

An assignment s that for every atomic proposition p, s(p) ⊆ S and s(p) ≠ ∅ .

The extension of s to complex propositions is given by taking the subject matter
of a proposition to be the sum of the subject matter of its parts:

s(A) = ∪ {s(p) :  p appears in A}

Any such  s and  S we call a subject matter assignment.  
The relatedness relation associated with s is:

Rs(A, B)  È   s(A) ∩ s(B) ≠ ∅

Given any subject matter relatedness relation, R, we can define the subject
matter of a proposition, A, to be sR (A) = {{A, B}: R(A, B)}.  This is the
subject matter assignment associated with R .

Lemma 2 a. For any relatedness relation  R, R(A, B) È sR (A) ∩ sR (B) ≠ ∅ .
b. For any subject matter assignment s, Rs satisfies R1–R4 .
c. For any relatedness relation R, R = RsR

.
d. For any subject matter assignment s,  

s(A) ∩ s(B) ≠ ∅  È   sRs
(A) ∩ sRs

(B) ≠ ∅.

Proof  a.  sR(A) ∩ sR (B) ≠ ∅  È {{A, C}: R(A ,C)} ∩ {{B, D}: R(B, D)} ≠ ∅  
È some C, D, {A, C} = {B, D}
È either A = B (and so R(A, B) since R is reflexive)

or some C, C = B (and so R (A, B) )
or some D, D = A (and so R (A, B), since R is symmetric).

b.  Because for every  p,  s(p) ≠ ∅ ,  we have s(A) ≠ ∅ for every A , so 
R(A , A) holds.  And  R is symmetric.  We also have  s(A) = s(ÏA) , so  R(A, B)  È
R(ÏA, B). And s(A→ B) = s(A) ∪s(B)  so  R(A, B→ C)  È  R(A, B∧ C). Finally,

R(A, B→ C) holds È   s(A) ∩ [s(B) ∪ s(C)] ≠  ∅
È   [s(A) ∩ s(B)] ∪ [s(A) ∩ s(C)] ≠  ∅
È   s(A) ∩ s(B) ≠  ∅  or  s(A) ∩ s(C) ≠  ∅
È   R(A, B)  or  R(A, C)

c.  RsR
(A , B)  È  sR(A) ∩ sR(B) ≠ ∅  È  there are C, D such that  

{A , C} ∈ s(A), {B, D} ∈ s(B), {A, C} = {B, D}, R(A, C) and R(B, D)  
È  either A = B, so R(A , B),  or  A ≠ B,  so C = B and  R(A, B).
d.  This follows from (a) via the relatedness relation associated with  sR .Ÿ

Since the only aspects of an atomic proposition that are significant in our
model are its truth-value and subject matter (in terms of its place in a relatedness
relation) we can make an abstraction of a model:
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L(Ï, → , p0, p1, . . . )

                          v , R, and truth-tables
          { T , F}

Here v is a way to assign truth-values to the propositional variables; R is a
symmetric and reflexive relation on the variables that is extended to all wffs by
R1–R4.  And  v is extended to all wffs by the tables for classical Ï and the related
conditional for  → .  Any difference between two models is ignored if they result
in the same abstract models.

Up to this point we have made no infinitistic assumptions about either the
formal language or the semantics.  To have full generality and to freely use
mathematics in our studies, the following assumption is often invoked.

The fully general relatedness abstraction   Any function from the collection of
propositional variables to {T, F }, together with any symmetric, reflexive binary
relation on the propositional variables form a model, when the relation is extended
to all wffs by R1–R4 and the truth-assignment is extended to all wffs by the truth-
tables.  Any such relation is called a (subject matter) relatedness relation.

That is, not only do differences between models not matter if the models
result in the same abstract model, we no longer are concerned if an abstract model
arises from an actual model.

Classical predicate logic
The notions of realization and model in classical predicate logic depend on how
we understand the relation of the formal language of predicate logic to ordinary
language.  A full presentation of those ideas is given in Epstein, 1994.  Here we
briefly summarize what is needed from that volume for the development of
predicate relatedness logic.  

Our formal language is:

L(Ï, → , ∀, P0 , P1 , . . . , c0 , c1 , . . . )

Here each of the logical symbols are taken as primitive: P0 , P1 , . . . are predicate
symbols (where superscripts for the -arity of each have been supressed), c0 , c1 , 
. . . are name symbols.  Though not explicit in this notation, the formal language
also comes equipped with variables, x0 , x1 , . . .  .  The meta-variables t, u, v
stand for any term (variables or name symbols); A , B , C , . . . stand for any
formulas;  i , j , k , m, n  stand for natural numbers.  We also use  x, y, z, w
and  y0 ,  y1 , . . .  as variables in informal formulas and as metavariables for
variables, and →x,  →y,  →z  to range over sequences of variables.  We set:  

∃x A  ≡Def  Ï∀Ïx A

Given a formula A with  xi1
, . . . , xin

 a list of all variables that occur free
in A, with i1 < . . . < in, we define the closure or universal closure of A as:  

∀. . . A  ≡Def  ∀xi1
 . . . ∀xin 

A
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A realization is a semi-formal language, which we call semi-formal
English or formalized English.  Predicate symbols are realized as linguistic
predicates, name symbols by names, and complex formulas are realized by
replacing the predicate and names symbols in them by their realizations.  
For example:

(1) L(Ï, → , ∀, P0 , P1 , . . . , c0 , c1 , . . . )

         ↓
L(Ï, → , ∀, ∃ ;  ‘is a dog’,  ‘is a cat’,  ‘eats grass’,  ‘is a wombat’, 
    ‘is the father of’ ; ‘Ralph’, ‘Dusty’, ‘Howie’, ‘Juney’ )

Here ‘is a dog’ is the realization of   P0
1 ,  which we write as real(  P0

1) = 
‘is a dog’,  and  ‘is a wombat’  = real(  P3

1), and  ‘is the father of’ = real(  P0
2) .

Similarly, ‘Howie’  realizes  c2 ,  which we write as  ‘Howie’ = real( c2 ) .  
The expressions or formulas of the semi-formal language are the realizations of
the formal wffs.  For example, ‘Ralph is a dog’ is an expression of the semi-
formal language.  It is the realization of:  P0

1(c0) .  We notate this as  real(  P0
1(c0))

= ‘Ralph is a dog’.  Similarly, we have the following expressions of the semi-
formal language:

Ï(Ralph is a dog) →  ∀x0 (x0  is a cat)          x32  is a dog

These are realizations of, respectively, Ï P0
1(c0) →  ∀x0 ( P1

1(x0)) and P0
1(x32) .

Since predicates and names in a presentation of a realization are pieces of
language, we simplify the notation of realization (1) to:

L(Ï, → , ∧ , ∀, P0 , P1 , . . . , c0 , c1 , . . . )
         ↓

L(Ï, → , ∧ , ∀ ;  is a dog,  is a cat,  eats grass,  is a wombat,  
    is the father of ;  Ralph,  Dusty,  Howie,  Juney )

In what follows we will use P, Q to range over {real(Pi) : i ≥ 0 }.
A semi-formal language is linguistic, a formalized fragment of English.  

The predicates and names have their usual meanings in English.  So, the truth-
values of the atomic propositions are fixed in the realization, though we might 
not know those truth-values

To determine the truth-values of quantified sentences, however, we have to
agree on exactly what objects the variables can range over.  We collect all the
referents of the names plus any other objects we want the variables to range over
and call that the universe.  For the previous example of a realization we could
take the universe to be all animals.

A key assumption of classical predicate logic is that the only semantic
property of any name is its reference: How we name objects does not matter. 

The extensionality of predicates   Given any predicate P and any terms t and u
that refer to the same object (possibly through some temporary indication of
reference), then P( t) and P(u) have the same truth-value; and similarly for 
n-ary predicates.
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The application of a predicate to an object  A predicate P  applies to or  
is true of a particular object È given a variable x with an indication that x 
is to refer to the object, then P(x) is true; and similarly for n-ary predicates.

Thus, once we have a realization with a universe, all atomic predications are
fixed, though we might not know the truth-values of those.

A model is the extension of the valuation of atomic predications to all closed
formulas of the semi-formal language via:

v (ÏA) = T È våA 
v (A→ B) = T È not (vÅA and våB)
v (∀x A) = T È no matter what object x is taken to refer to, v(A(x)) = T

These clauses can be formulated in terms of assignments of references.  
Let σ, τ, . . . range over ways that objects of the universe can be named, either
with names from the semi-formal language or temporarily with variables.  In most
general terms, σ assigns for each variable x an object σ(x) of the universe, and
for each name c, for every σ and τ, σ( c) = τ(c) .  We assume that there are
sufficient ways to name objects.3  We make the following definition for each σ.

Recursive definition of truth in a model
vσ(P(t0 , . . . ,  tn)) = T  È  real (P) applied to σ(t0), . . . , σ(tn) via the 

(possibly temporary) names t0 , . . . ,  tn is true
vσ(ÏA) = T È våA 
vσ(A→ B) = T È not (vσÅA and vσåB)

(2) vσ(∀x A) = T È for every assignment of references τ  that differs 
from σ at most in what it assigns as reference 
to x, vτ(A) = T

For every closed wff A, v(A) = T È for every σ, vσ(A) = T .  

We also allow for different models to be built on the same realization and
universe because we might not know the truth-values of the atomic predications.

In doing the metamathematics of logic we often make the extensional
abstraction of a classical predicate logic model:

The universe is taken to be a non-empty set.
Each n-ary predicate is identified with a subset of n-tuples of the 

universe, which we call the extension of that predicate.
Each name is taken to refer to one element of the universe. 

For example, if the universe of the model is all animals, the predicate 
‘is a dog’ could be identified with the set of dogs, the predicate ‘is the father of’
could be identified with all pairs of elements of the universe such that the first
element is the father of the second element, and ‘Juney’ could be mapped to the
particular dog whose name is ‘Juney’.

That is, a model is abstracted to:

3  See Epstein, 1994, p. 95.



                                             Relatedness Predicate Logic    25

M  = æ U ; P0, P1, . . . , a0, a1, . . . Æ
                                                

                      a set    subsets of n-tuples of U     elements of U 

In an extensional abstraction of a model, a predicate applying to a sequence
of objects is true È the sequence of objects in the universe is in the set of 
n-tuples corresponding to that predicate.  We have the following picture:

L(Ï, → , ∀, P0 , P1 , . . . , c0 , c1 , . . . )

                                   
L(Ï, → , ∀ ;  realizations of predicate symbols; realizations of name symbols )

                                   

L(Ï, → , ∀ ;  realizations of predicate symbols; realizations of name symbols
universe specified in some way;  assignments of references, σ, τ, . . . ;  
assignments of truth-values to atomic predications, vσ , vτ , . . .

                 

   

           extensional abstraction
 recursive                                                                                           
 definition                æ U ;  P0 , P1, . . . , a0 , a1, . . . Æ

   of truth              

                                                        extensional version of truth definitions

                               { T, F}

In doing the metamathematics of logic we often make the fully general
abstraction of classical predicate logic: Any set U ≠ ∅, and any subsets of 
n-tuples P0, P1, . . . of U, and elements a0, a1, . . . of U can make up an
extensional model.  That is, as with abstract models for propositional logic, any
difference between two models is ignored if they result in the same extensional
model, and we do not care if an extensional model arises from a realization.

Though a realist could say that linguistic predicates in our realizations are
just standing for actual abstract predicates, it is not clear what the name symbols
could be realized as if not names.  By bypassing entirely linguistic realizations
and considering only extensional models, a realist interpretation is possible,
though even there, for the example above, the model would be an odd mixture of
abstract predicates and concrete objects, such as Juney and Ralph.  

The extensional abstraction assumes that all that is significant about a
predicate is (if it’s a unary one) the set of elements of the universe to which it
applies.  Hence, consider two predicates:

‘is a dog’
‘is a cat’
universe: all objects from Earth on Mars

Since these two predicates agree on their extensions, classical predicate logic does
not distinguish between them in the sense that they give rise to the same
extensional interpretations in the model.  Nonetheless, no one believes that ‘is a
dog’ and ‘is a cat’ are the same predicates in the realization.  It is simply an 
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identification of them that we effect in going from the realization to the
extensional model, “throwing away what we don’t need” (or what we don’t know
how to use).  We treat them in the extensional abstraction as if they were the same
predicate.  Thus, even though two models may differ in their realizations, if they
agree in their extensional abstractions, then they are the same for the
mathematical theory.  The extensional abstraction supposes that all that is
significant about realizations has been captured in the extensional models.

Pure predicate relatedness logic, PS
In building a predicate logic on the propositional logic S, we will modify classical
models to take into account subject matter relatedness.  We begin with the
language without names, L(Ï, → , ∀, P0 , P1 , . . . ) .

In order to give a definition of truth for a realization, we need to know not
only the atomic predications, but also what each formula is related to in subject
matter.  In the propositional case we treated the logical symbols as neutral for
relatedness:  Ï  and →  contribute nothing to the relation.  So in building our
simplest model of the notion of relatedness, we will treat the logical symbols 
∀xi and xi  as contributing nothing, too.

In propositional logic the subject matter of a proposition is the union of the
subject matters of its parts.  We do the same for this predicate logic.  We assume
for every model the following:

A set of topics  S ≠ ∅ .

An assignment s that for every predicate P, s(p) ⊆ S  and s(p) ≠ ∅ .

s (A)  =  ∪ {s(P) : P appears in A}

Then relatedness is determined by:

Rs (A, B)  È  s(A) ∩ s(B) ≠ ∅ .

Again, Rs is reflexive and symmetric.  The definition of truth in a model is as in
the classical case except for the clause governing conditionals:

vσ(A→ B) = T   È   not (vÅA and våB) and R (A, B)

The logic PS is the semantic consequence relation of all such models in
L(Ï, → , ∀, P0 , P1 , . . . ).  Since the universal relation on wffs is a relatedness
relation, the logic PS is a sublogic of classical logic.

In our models, for each predicate we have to specify both a subject matter
and the truth-value of each of its atomic predications.  For example, we may have
two predicates ‘is a woodchuck’ and ‘is a groundhog’ which are true of exactly
the same objects in all universes.  But we may choose to have them related to
different predicates, say the first to ‘is a silly poem’ and the second to ‘is a day of
the year.’4  These predicates, then, have the same extension in every model but
are not synonymous.
4  For non-Yankees, ‘How much wood would a woodchuck chuck if a woodchuck could chuck
wood?  As much wood as a woodchuck would chuck if a woodchuck could chuck wood’; and
February 2 is ‘Groundhog Day.’
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At what point is the assignment of subject matters made: in the realization,
or in the model (realization plus universe)?  It would seem that the subject matter
of a predicate is independent of the choice of universe, since subject matters are
aspects of the linguistic predicates, that is, of parts of the semi-formal language.

On the other hand, one might say that the subject matter of a predicate
depends on what kind of things we are talking about.  For example, the subject
matter of ‘has two legs’ might be different if the universe is all pieces of furniture
as opposed to all living mammals.  But this seems to confuse subject matter with
the extension of a predicate.  What kind of things we are talking about is not
something that we can represent in the semi-formal language, aside from using the
predicates of the language.  For example, if the universe is all mammals, we can
express in the semi-formal language that we are talking about all two-legged
things by using the predicate ‘has two legs’.  But we cannot express that we are
talking about all things that have two legs and are mammals.  That is implicit, but
not expressible in the semi-formal language.

Hence, as the atomic predications that use names are fixed at the realization,
so, too, are the subject matters of atomic predicates.  But just as we may not know
those truth-values, and hence allow different models to be built on what is the
same linguistic realization, we allow different models to take account of different
choices of subject matter for the same linguistic realization.

As in the propositional case, we could take subject matter relatedness
relations as primitive.  Given a realization, a pure predicate subject matter
relatedness relation (or PS-relatedness relation) is any reflexive, symmetric
relation R on formulas satisfying the following.

The S-conditions R1–R4.

R5 R(P(→x ) , P(→y ) )

R6 R(P(→x ) , Q(→y ) )  È  R(P(→z ) , Q(→w ) )

R7 R(∀x A, B)  È  R(A, B)

Lemma 3   For any relatedness relation R ,  R(A, B)  È  
for some P in A , some Q in B , some →x  and →y ,  R(P(→x ) , Q(→y )) .

Proof    The proof is similar to that for Lemma 1.b.  Condition R6 ensures the
lemma if A and B both have length 1.  Suppose the lemma is true for all A 
of length ≥ n and all Q.  To show it holds for all A of length ≥ n + 1 and all Q,
all the induction steps are as for Lemma 1, except now R(∀x A, Q(→y )) È 
R(A, Q(→y )) by R7, and hence by induction, R(∀x A, Q(→y )) È R( P(→x ) , Q(→y ))
for some P in A.  The rest of the proof we leave to you.Ÿ

Thus, any symmetric, reflexive relation r on atomic predicates determines a
pure relatedness relation R on all formulas via the condition of Lemma 3 and
R( P(→x ) , Q(→y )) È r (P, Q) .

Given R we may define sR (P) = {{P, Q}: R(P(→x ) , Q(→y ))}.  The proof of
the following is a modification of the proof of Lemma 2 that we leave to you.
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Lemma 4 a. For any subject matter assignment s, Rs satisfies R1–R7.
b. s(A) ∩ s(A) ≠ ∅  È  Rs(A, B)  È  sRs(A) ∩ sRs

(A) ≠ ∅.

c. R(A, B)  È  sR(A) ∩ sR(A) ≠ ∅  È  RsR
(A, B).

We can characterize syntactically the relatedness relation of a model:

R(A, B)  ≡Def  ∀. . . (A→ (B→ B))

If A and B are closed wffs, then R(A, B) is A→ (B→ B), as in the propositional
case.  We can also define as for the propositional logic: 

A∧ B  ≡Def  Ï(A→ (B→ Ï((A→ B)→ (A→ B))))

We leave to you to show that in any model:

vσÅ R(A, B)  È  R (A, B) in M

vσÅA∧ B  È  vσÅA and vσÅB

An axiomatization of pure relatedness predicate logic is given by:

Take an axiomatization of classical predicate logic in which the only
rule is modus ponens for closed formulas.5 

Replace the propositional axiom schema by the axiom schema of S .

Add the following axiom schema:

1.  R( P(→x ), P(→y ) )

2.  R( P(→x ), Q(→y ) ) →  R( P(→z ), Q(→w ) )

3.  R(∀x A, B) ↔ R(A, B)

A straightforward modification of the usual Henkin-style completeness
proof for predicate logic and the completeness proof for S will show that this
axiomatization is strongly complete.  That is, writing ‘Í’ for syntactic
consequence,  ΓÍA È ΓÅA .  The proof of this and other completeness theorems
we discuss below will appear in a sequel to this paper.

An example
Consider the proposition:

Numbers cough.

In predicate logic we would formalize this as:6

(3) ∀x (x is a number →  x coughs)

This is true in any classical predicate logic model whose universe is composed of
all animals, since the antecedent is false of every object.

But is there subject matter overlap in (3)?  At least on the ordinary reading
of the words, we normally would say that there is no subject matter in common
between ‘number’ and ‘coughs’: It’s a category mistake to predicate both 

5  As in, for example, Grzegorczyk, 1974, or more particularly as in Epstein, 2005.
6  See Chapter V of Epstein, 1994.
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‘coughs’ and ‘is a number’ of anything.  We don’t even need to know what the
universe of the model is to know the following.

(4) s (is a number) ∩ s (coughs) = ∅

Hence (3) is false.
How we determine the categories is not crucial to this example.  It’s enough

that people in general think that (4) is right, and philosophers in particular talk
about category mistakes.  We apparently have semantic categories implicit in our
talk.  We needn’t assume that categories and subject matter are part of our
ontology.  We can view them as convenient ways of speaking about usage.

Now either we accept that such talk makes sense, and try to model it; 
or we show that such talk doesn’t make sense, perhaps by showing the
consequences of attempting to model it.

Still, someone might say that ‘numbers’ and ‘coughs’ do have something in
common.  We use numbers to count, and we can count coughs.  That is ‘numbers’
and ‘counts’ are related, and ‘counts’ and ‘coughs’ are related.  So ‘numbers’ and
‘coughs’ are related.  But remember that we are talking here of immediate subject
matter overlap, one-step relatedness.  The notion of non-empty intersection is not
transitive.  Just as in Lemma 1, if subject matter relatedness is taken to be
transitive, predicate relatedness logic collapses into classical logic because every
proposition will be related to every other.  We can always cook up connections.

Nor is it right to say that ‘numbers’ and ‘coughs’ are related because there is
a chain of reasoning that can get us from talking about numbers to talking about
coughing.  That would be to invoke an entirely different notion of relatedness,
something like deductive relevance.

In any case, we do not see there being one subject matter model of ordinary
language.  Rather, we agree on the categories of natural language we are using,
and that determines the model.

This is not intended to be a full analysis.  It raises difficult questions: What
does ‘make sense’ mean?  How do we set up categories?  Given the categories, how
do we decide which predicates go into which categories?  Are all our models
psychological in a way that, say, assigning truth to an ‘if . . . then . . .’ claim in
classical logic isn’t?

What we have done here is develop tools to investigate these questions, based
on the assumption that we can assign subject matters to predicates and names.

Equality without names
In PS we could designate, say, P0 to play the role of equality.  We could add the
usual axioms for ‘=’, except now for P0 , and specify the properties we wish
equality to have for relatedness by adding additional axioms governing P0, which
by the strong completeness theorems is equivalent to restricting the class of
models appropriately.  But one property we cannot specify is that P0 is the identity
of the universe and not an equivalence relation.  That we can do only if we agree 
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to it by convention, as is usual when adding ‘=’ to the language of predicate
logic.7

So for relatedness predicate logic, too, we add ‘=’ to the language, stipulating
that in all models it is to be realized as the identity on the universe.  That is, for any
assignment σ, vσÅ x = y  È  σ(x) is the same object in the universe as σ(y) .  

We need to specify how we will treat ‘=’ for relatedness.  We consider four
choices, for each of which we will continue to have that the subject matter of a
proposition is the union of the subject matters of its parts:

s (A)  =  ∪ {s(P) : P in A}  ∪  ∪ {s(c) : c in A}  ∪  {s(‘=’) : ‘=’ is in A}

a.  We could treat ‘=’ as any other predicate: It is related to itself and, depending
on the model, related to some other predicates, unrelated to others.  In terms of
subject matter assignments, the only requirement we have is that ∅ ≠ s(‘=’) ⊆ S .

But in distinguishing ‘=’ as the identity of the universe we are elevating it to
the status of a logical symbol, as discussed in Epstein, 1994.  The interpretation of
it is always the same, regardless of the model.  And so its place in the relatedness
relation should always be the same, regardless of the model. We reject this choice.

b.  We could say that just as Ï, → , and ∀x contribute nothing to the subject
matter of a formula in which they occur, ‘=’ has no subject matter, too.  Equality
would be completely neutral with respect to subject matter, adding nothing to the
topics.  Thus, if ‘x is a prime number’ is unrelated to ‘y is a dog’, then ‘x is a
prime number and x = x’ is unrelated to ‘y is a dog and x = x.’  In terms of
subject matter assignments this amounts to taking s(‘=’) = ∅ .  

But then ∀x (x = x →  x = x) would be false in every model.  However,
for every unary predicate P, the following is valid: 

∀x∀y ((x = x ∧  P(x)→  P(x) ) →  (y = y ∧  P(y)→  P(y)))

We would not be able to reason directly about equality.  We could reason about
equality only after we have established a particular topic.  Or we could reason
directly about equality using ∧  and classical Ï, except that we would have to take
∧  as primitive.  The definition of classical ∧  as in Section A no longer would
work, for it would give as valid ∀x ∀y (x = y ∧  P(x) ) .  This seems too large a
departure from what we have done previously to develop here.

c.  We could say that ‘=’, since it is a predicate, should be related to itself in
order to preserve the reflexivity of the relatedness relation; but because it is a
logical symbol, it should not be related to any other predicate.  In terms of subject
matters, we add a distinguished element e to every set of topics, e ∈S , and set 
s (‘=’) = {e}, while for every other predicate P, e ∉ s (P).  In terms of the
relatedness relation, we would add the conditions:

(5) R (x = y,  z = w )

not R (x = y,  P(→z ) )

7  See Chapter VI of Epstein, 1994.
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The latter is the first negative condition imposed on relatedness used in
establishing a logic.  

We then take the logic PS(=) to be the semantic consequence relation of all
PS models in which (5) holds and ‘=’ is evaluated as the identity.

Now the usual axioms for equality hold, for example, x = y →  y = x.  But
the following will not be valid.

(6) ∀x∀y ( x = y →  (A(x)  ↔ A(y) ) )

Rather, defining ∧  as before, the following is valid.

(7) ∀x∀y ( ( x = y ∧  A(x) ) →  A(y) )

Equality cannot stand apart from other predicates when we wish to invoke it in
relation to those predicates, but must be in a clause appended to the predicate.

By adding the syntactic equivalents of (5) to PS, along with the usual
axioms governing ‘=’ from the classical predicate logic modified to use (7) in
place of (6), we can obtain a strongly complete axiomatization of PS(=) .  But
what we don’t have is that the universal relation on formulas is a relatedness
relation.  Hence, we don’t have that PS(=) is a sublogic of classical logic .  In
particular, the negation of (6) is valid in this system for every A in which 
‘=’ does not occur.

d.  We can say that ‘=’, like other logical symbols, should be neutral in the sense
that it can be used in any formula without involving issues of relatedness.  This
we can accomplish by taking ‘=’ to be related to every predicate.  In terms of
subject matter assignments, s (‘=’)  =  S .  In terms of the relatedness relation, we
have the following requirement:

(8) R (x = y, A)

The logic PS(=u) is the semantic consequence relation of all PS models in
which (8) holds and ‘=’ is evaluated as the identity.  Since the universal relation
on formulas is now a relatedness relation, PS(=u) is a sublogic of classical
predicate logic with equality.

To axiomatize PS(=u), we need add only the scheme R(x = y, A) and the
classical axiom schema for equality to the axiom system for PS.

But now we have that the following is valid:

(9) ∀x ( (x = x ∧  x ≠ x) →  ∀x P(x) )

For example,  ∀x ( (x = x ∧  x ≠ x) →  ∀x (x is a dog) ) is true.  Doesn’t this
violate the intuition on which S was based?  Why should this be true, yet 
‘The moon is made of green cheese →  2 + 2 = 4’ is false?

That (9) is valid just reflects our view of the universal relevance of equality
to all our reasoning.  If you find this unacceptable, then option PS(=) will be
preferable.  The choice between (9) being valid or the negation of (6) being valid
reflects the choice of constraints on reasoning with subject matters.
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Names without equality
We can extend our work to the formal language containing both names and
variables, L(Ï, → , ∀, P0, P1, . . . , c0, c1, . . . ).

Now names, as primitive parts of speech, will have subject matter, too.  
We modify models of PS to include:

(10) A set of topics  S ≠ ∅ .

An assignment s that for every predicate P, s(P) ⊆ S and s(P) ≠ ∅,  
and for every name c, s(c) ⊆ S and s(c) ≠ ∅  .

s (A)  =  ∪ {s(P) : P in A}  ∪  ∪ {s(c) : c in A}

Then relatedness is determined by:

Rs(A, B)  È  s(A) ∩ s(B) ≠ ∅

It would seem simple to set out semantics for this language.  As in the
classical case, for each i, for each assignment of references σ, σ(ci ) is the same
element of the universe.  And for any terms t1, . . . , tn :

vσÅ Pi (t1, . . . , tn)  È  P applied to the sequence σ(t1), . . . , σ(tn) is true.

But this doesn’t work, for the following can fail in a model:

(11) ∀x A(x) →  A(c)

For example, take A(x) to be  ∀z Ï( P0(x) →  P1(z) ), and a model in which
every object in the universe that satisfies the realization of P0 also satisfies the
realization of P1 .  If in addition, P0 and P1 are unrelated, ∀x A(x) is true in 
the model.  But if we choose a name c  such that c  and P1 are related, then  
∀z Ï( P0(c) →  P1(z) )  is false in the model.

The reason (11) fails is because as we range over assignments of 
references in a model:

xi  ranges over individuals referentially
ci  ranges over individuals both referentially and with subject matter

This is not a problem in classical logic, because all a name does is pick out
an individual.  But even for the classical case, some notion of naming lies behind
the recursive definition of truth in a model.  As discussed in Chapter IV of
Epstein, 1994, the use of an assignment of references is a way to model or abstract
from the idea that in evaluating ∀x A(x), “no matter what object we pick out and
name—perhaps ostensively—that object satisfies A”.  Indeed, the very notion of a
predicate applying to an object depends on abstracting from the idea of naming.  
It is only with extensional models in which the universe is abstract objects,
particularly in applications of classical logic to mathematics, that the notion of
naming seems to evaporate.  But to take the application of classical logic to
mathematics as the archetype does not allow us to consider the relation between
formal logic and reasoning in ordinary language.

This way of understanding the evaluation of quantifiers in predicate logic 



                                             Relatedness Predicate Logic    33

looks much like the substitutional interpretation of quantifiers:

(12) ∀x A(x)  is true  È for every name  t  of an object in the universe,
A(t) is true

Only here ‘t’ ranges over not just names in the language, but any way we might
name objects, including ostensively.  When we range over assignments of
references in the valuations, we are ranging over ways to name objects of the
universe, though these may be abstracted a great deal from naming procedures in
our daily lives.  What we understand by ‘naming’ is part of what we specify when
we specify a universe.8

In the classical case, the only difference between a name in the language and
a temporary name that we may give in evaluating a quantified formula is that the
name in the language always gets the same element assigned to it.  There is
nothing more to a name than what it picks out as reference.

Here, there is another difference between a name in the language and a
temporary name used in a valuation: A name in the language has some content,
namely, subject matter.  Temporary names do not have subject matter, and an
attempt to give them subject matter is to confuse metalanguage with object
language: we could not assign subject matters when we specify the realization.  
So we adopt the following.

Universal quantifiers and names  vσ(∀x A) = T
È for every assignment of references τ  that differs from σ at most in 

what it assigns as reference to x, vτ(A) = T 
and for every name c  in the language, vτ(A(c/x)) = T

This exactly reflects what we said at (12).  And this method of evaluating
universal quantifiers works equally for classical predicate logic.  That is, for any
model of classical logic, for every assignment of references σ, for every formula
A, vσ (A) = T with the standard evaluation of universal quantifiers, (2), in the
model È vσ (A) = T using the evaluation of universal quantifiers and names.9

The logic PSN in L(Ï, → , ∀, P0, P1, . . . , c0, c1, . . . ) is the semantic
consequence relation of all PS models using (10) for assignments of subject
matters and in which the definition of truth in a model uses the evaluation of
universal quantifiers and names.

We leave the proof of the next lemma to you.

Lemma 6 a. ∀. . . ∀x A(x) →  A(c)  is a scheme of valid formulas in PSN.

b. For any  model M of PSN, MÅR(A, B)  È  R (A, B)

c. For any  model M of PSN, for every closed A, for every σ, τ,  
vσÅA È vτÅA .

d. The logic PSN is contained in classical predicate logic in the 
language of names without equality. 

8  See Chapter IV of Epstein, 1994.
9  This is the same evaluation of quantifiers discussed and used in the classical free logic
presented in Epstein, 2005, though it was first devised for use here.
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Lemma 7   PS  ∫  PSN restricted to the language without names.

Proof:  To show that PS  ⊆  PSN, we show that each axiom of PS is true in every
PSN model.  Models of PSN preserve truth under applications of modus ponens
for closed wffs, so each consequence of the axioms is true in PSN models, too.

To show that PS ≠ PSN restricted to the language without names, consider
the formula (*) ∃x ∃z Ï (P0(x) →  (P1(z) →  P1(z) ).  This is not valid in PS,
because we can find a model in which R (P0, P1) fails.  But for PSN, in every
model we have P0(c1) →  (P1(c1) →  P1(c1) ) is true, and hence (*) is, too.Ÿ

The proof of Lemma 7 shows that by allowing our quantifiers to use names
as substituends we can create new relatedness where, in the language with no
names, there was none before.

We can define the models of PSN in terms of relations.  Let r be a
symmetric, reflexive relation on the collection of all predicates and names 
in the language.  Then define R on all formulas via:

(13) R (A, B)  È  at least one of the following holds:
some P in A, and some Q in B, r (P, Q)
some c in A, and some Q in B, r (c, Q)
some P in A, and some d in B, r (P, d)
some c in A, and some d in B, r (c, d)

We do not know how to characterize (13) in terms of conditions such as
R1–R7 for PS-relations, and hence how to characterize the relatedness relations
syntactically for an axiomatization.  We could define R(P(→x ), Q(→y ) ) as before,
but we have no formula A such that R ( A(c), Q(→y ) ) È r (c, Q) , since every
formula involving c also involves at least one predicate, and that predicate can
contribute to the subject matter of A.

In this logic we have continued to assume that predicates are extensional.
But since names can be distinguished by their subject matter, we should be able to
take into account subject matter when making atomic predications.  We could take
the application of a predicate to an object to be defined as before, requiring that
for all variables x and y, P(x) and P(y) have the same truth-value whenever x
and y have the same reference, and similarly for n-ary variables.  Then we could
make the following definition. 

Relatedness application of predicates   P(c) is true  È  the predicate P applies
to the object named by c and s(P) ∩ s(c) ≠ ∅ .

Using this we could have ‘Marilyn Monroe is an actres’ is true in a model while
‘Norma Jean Baker is an actress’ is false.

We do not see how to define this notion within the semantics and syntax of
PSN, for the same reason that we cannot see how to define in the formal language
a formula that corresponds to R (P, c).  Nor do we see how to define the
extensional application of predicates from relatedness applications.  But we can
do so if we introduce equality.
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Names and equality
As in our earlier discussion of equality, we have two choices for semantics for the
language L(Ï, → , ∀, =, P1, . . . , c0, c1, . . . ).

a.  First, consider using the semantics of PS(=u) and adding the requirements on
subject matters for names from the last section.  That is, we add extensional
equality to the logic PSN :

For any names c, d, and any variable x,

vσÅ c = d  È  σ(c) = σ(d)

vσÅ x = d  È  σ(x) = σ(d)

vσÅ c = x  È  σ(c) = σ(x)

For subject matter assignments, we take 

A set of topics  S ≠ ∅ .

An assignment s that for every predicate P, s(P) ⊆ S and s(P) ≠ ∅ ; 
and for every name c, s(c) ⊆ S and s(c) ≠ ∅ ; and s ( ‘=’ )  =  S .

s(A)  =  ∪ {s(P) : P in A}  ∪  ∪ {s(c) : c in A}  ∪  {s(‘=’) : ‘=’ is in A}

Then relatedness is determined by:

Rs(A, B)  È  s(A) ∩  s(B) ≠ ∅

The logic PSN(=u) is the semantic consequence relation of all such models. 
The following fails to be valid in PSN(=u) :

c = d →  ( A(c) ↔ A(d ) )

This is because in a model c  may contribute to relatedness within A in a different
manner than d does, as in: Marilyn Monroe = Norma Jean Baker  →   [ (Marilyn
Monroe was an actress →  an actress married Arthur Miller) →  (Norma Jean
Baker was an actress →  an actress married Arthur Miller) ]’ .  This reflects that
‘=’ is referential equality, while the evaluation of the conditional takes account of
the subject matters of names.

For this logic, too, we cannot see how to define a syntactic equivalent of the
relatedness relation of the model, and hence, we cannot see how to axiomatize it.

b. Alternatively, we may conjoin the semantics of PSN and PS(=).  The
definition is exactly as for PSN(=u) except that a distinguished element of the set
of topics is taken as the subject matter of the equality predicate: s (‘=’) = {e}.  
The logic of these models is called PSN(=) . 

In PSN(=) the definition R(A, B) ≡Def ∀. . . (A→ (B→ B))  can be used to
characterize the relatedness relation of a model syntactically.  Then in every
model the following holds:

MÅR(x = c, P(→y ))  È  R(c, P)  

And we have that (13) holds as in PSN(=).  Using this, we believe that we can
axiomatize PSN(=), though we have not done that.
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In PSN(=) we can define the relatedness application of a predicate.  For
unary predicates we take:

Prel (c)  ≡Def  P(x) ∧   R(x = c, P(x) ) 

In any model, MÅPrel (c) È MÅP(c) and s(P) ∩ s(c) ≠ ∅ .
We can also define a relatedness application of the equality predicate.

c =rel d  ≡Def  c = d ∧  R(x = c, x = d )

Then we have:

vσÅ c = d  È  σ(c) = σ(d) and s(c) ∩ s(d) ≠ ∅ .

The abstraction of relatedness models
As for classical predicate logic, we can present an abstraction of models that
facilitates a mathematical analysis.  We will do this for the logic PSN.

For the language L(Ï, → , ∀, P1, . . . , c0, c1, . . . ) with variables x0, 
x1, . . . , the abstraction of a relatedness model is:

U ≠ ∅  is a set, the universe
S ≠ ∅  is a set, the topic set
S ∩ U = ∅ 
Q i  is a subset of n-tuples of U for the appropriate n,

the extension of the predicate assigned to Pi 
S i  is a non-∅ subset of S,

the (set-theoretic) subject matter of the predicate assigned to Pi 
bi  is an element of U , the referent of the name assigned to ci 
si  is a non-∅ subset of S,

the (set-theoretic) subject matter of the name assigned to ci

M  = æ U ; S ; æQ 0, S 0Æ, æQ 1, S 1Æ, . . . , æb 0, s 0Æ, æb 1, s 1Æ, . . . Æ

We write:

Pi  for  æ Q i , S iÆ
ai  for  æ bi , siÆ
s (Pi ) = S i

s (ai ) = si

The extension of s to all formulas is via  s(A)  =  ∪ {s(P) : P appears in A}, 
the (set-theoretic) subject matter assignment of M .

The canonical relatedness relation associated with s  is:

rs (Pi , Pj ) È  s (Pi ) ∩ s (Pj ) ≠ ∅

rs (ci , cj) È  s (ai ) ∩ s (aj ) ≠ ∅

rs (ci , Pj ) È  s (ai ) ∩ s (Pj ) ≠ ∅

Rs ( A, B) È  s (A) ∩ s (B) ≠ ∅

An assignment of references σ is any mapping of the variables of the
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language to elements of the universe, subject to the condition that for any name c,
and any two assignments, σ, τ,  we have σ(c) = τ(c).  The recursive definition of
truth in a model uses the extensional application of predicates, the subject matter
relatedness evaluation of → , and the evaluation of universal quantifiers and
names:

vσ(Pi(t0 , . . . ,  tn)) = T  È  æσ(t0), . . . , σ(tn)Æ ∈ Q i

vσÅ t = u  È σ(t) = σ(u)

vσ(ÏA) = T È våA 

vσ(A→ B) = T È vσ(A→ B) = T   È   not (vÅA and våB) and Rs (A, B)

vσ(∀x A) = T È for every assignment of references τ  that differs 
from σ at most in what it assigns as reference to x , 
vτ(A) = T, and for every name c  in the language, 
vτ(A(c/x)) = T

For every closed wff A, v(A) = T È for every σ, vσ(A) = T.

We can simplify our notation.  Any element in S that does not appear in at
least one subject matter assignment contributes nothing to the model and may be
ignored.  So both S and s  can be taken to be given implicitly by the rest of the
structure:  S = ∪ i S i  ∪  ∪ i s i .  Hence, an abstraction of a relatedness model 
is simply:

M  = æ U ; æQ 0, S 0Æ, æQ 1, S 1Æ, . . . , æb 0, s 0Æ, æb 1, s 1Æ, . . . Æ

We call s, S, and Rs given implicitly by M above the associated s, S, and 
Rs of M.
 Given a relatedness model M, we define the classical part of M as:

M classical  =  æ U  ;  Q0,  Q1, . . . , b0,  b1, . . . Æ

Because we use the extensional application of predicates, any valuation in M and
M classical will validate the same atomic formulas.

As for the classical case, we can, if we wish, make the fully general
abstraction of relatedness models:  

A model can be comprised of:
any sets U ≠ ∅ , S ≠ ∅,  S ∩U = ∅ 
and any subsets of n-tuples of U (for appropriate n) Q 0, Q 1, . . . 
and any elements of U , b 0, b 1, . . . ,
and any non-empty subsets of S,  S 0, S 1, . . . , and s0, s 1, . . .  .

We leave to you formulations of the abstraction of models for PS(=u), PS(=),
PSN(=u), and PSN(=).

We believe that this method of giving semantics for logics using set-
assignments and relations on propositions can be used to give models for predicate
logics for many propositional logics, such as dependence logic, many-valued logics,
modal logics, and intuitionistic logic using the set-assignment semantics for those
propositional logics as presented in Epstein, 1990.
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