E rata

Classical Mathematical Logic

by Richard L. Epstein

p. 41

Theorem 6.e is inc orrect. Either of the follow ingare correct andeach is su fficient for any proof later in the text that depended on the erroneous v ersion.
(1) If Γ is a complete theory, then for every A, either $A \in \Gamma$ or $\urcorner A \in \Gamma$.
(2) If Γ is a theory, then Γ is complete iff for every A, either $A \in \Gamma$ or $\urcorner A \in \Gamma$.

p. 47

The displayed equivalence in Theorem 15 should read:

$$
\begin{aligned}
v(A \wedge B)=T & \text { iff }(A \wedge B) \in \Gamma \\
& \text { iff } A \in \Gamma \text { and } B \in \Gamma \text { using axioms 5, } 6 \text { and } 7 \\
& \text { iff } v(A)=T \text { and } v(B)=T
\end{aligned}
$$

pp. 101 and 102

A stronger version of Theorem 5 is needed later. The proof is a minor modification of the one given in the text.

Theorem 5 Let y_{1}, \ldots, y_{n} be a list of all variables free in A. Let t_{1}, \ldots, t_{n} be any terms such that t_{i} is free for y_{i} in A. L et σ, τ be any assignments of references such that for each $i, \sigma\left(y_{i}\right)=\tau\left(t_{i}\right)$. Then

$$
\sigma \vDash \mathrm{A}\left(y_{1}, \ldots, y_{n}\right) \text { iff } \tau \vDash \mathrm{A}\left(t_{1} / y_{1}, \ldots, t_{n} / y_{n}\right) .
$$

Proof We proceed by induction on the length of A. If A is atomic, this is the extensionality restriction. Suppose now that the theorem is true for all wffs of length $\leq m$ and A is of length $m+1$. I will leave the cases when A is $\mathrm{B} \wedge \mathrm{C}, \mathrm{B} \wedge \mathrm{C}, \mathrm{B} \rightarrow \mathrm{C}$, or $\neg \mathrm{B}$ to you. Suppose that A is $\forall x \mathrm{~B}$. Then:
$\sigma \models \forall x \mathrm{~B}\left(x, y_{1}, \ldots, y_{n}\right) \quad$ iff for every γ that differs from σ at most in what it assigns $x, \gamma \vDash \mathrm{~B}\left(x, y_{1}, \ldots, y_{n}\right)$
iff for every δ that differs from τ at most in what it assigns $x, \delta \models \mathrm{~B}\left(x, t_{1} / y_{1}, \ldots, t_{n} / y_{n}\right)$
(by induction, since x does not appear in any of t_{1}, \ldots, t_{n} as these are free for y_{1}, \ldots, y_{n} in A, and so $\left.\delta\left(t_{i}\right)=\tau\left(t_{i}\right)=\sigma\left(y_{i}\right)\right)$

$$
\operatorname{iff} \tau \vDash \forall x \mathrm{~B}\left(x, t_{1} / y_{1}, \ldots, t_{n} / y_{n}\right)
$$

The case when A is $\exists x \mathrm{~B}$ is done similarly.
The proof of Theorem 3 on p. 101 is then considerably simplified by invoking this Theorem 5:
(a) By way of contradiction, suppose some $\sigma, \sigma \nRightarrow \mathrm{A}(y / x)$. Let τ be such that for all z other than $y, \sigma(z)=\tau(z)$ and $\sigma(y)=\tau(x)$ Then by Theorem 5, $\tau \vDash \mathrm{A}(x)$ iff $\sigma \neq \mathrm{A}(y / x)$. Hence, $\tau \nLeftarrow \mathrm{A}(x)$. Part (b) is proved similarly.

p. 118

The proof of Lemma 3.d is as for Theorem VI. 5 on p. 102 given directly above.

p. 119

line 17 from bottom, read " t_{i} is x " for " $t_{i}=x$ " and " t_{i} is a_{i} " for " $t_{i}=a_{i}$ " line 14 from the bottom, read "closed wff B" for "wff B".

p. 120

Add an exercise:
7. Show that for every model M there is a model N which satisfies the predicate logic criterion of identity such that for every closed wff $A, M \not A$ iff $N \models A$.

p. 171

line 15, read "Axiom 3" for "Axiom 2".

p. 172

line 3 should read:
H erce, by modus ponens, we have $\vdash \forall x(\forall \ldots)_{1}(\forall y \mathrm{~A}(x) \rightarrow \mathrm{A}(x))$, as desired.

p. 173

In the definition of Σ_{n+1} each appearance of " Σ " should be replace by " Σ_{n} ".

p. 173

line 6 from the bottom delete "hence by Lemma 1" and replace with:
Σ is also a theory: if $\Sigma \vdash \mathrm{A}$ and if $\mathrm{A} \notin \Sigma$, then by construction, $\urcorner \mathrm{A} \in \Sigma$, so Σ would be inconsistent, so $\mathrm{A} \in \Sigma$.
p. 174
in the definition of the model it should read:
$\sigma \models \mathrm{P}_{i}^{n}\left(t_{1}, \ldots, t_{n}\right)$ iff $\mathrm{P}_{i}^{n}\left(\sigma\left(t_{1}\right), \ldots, \sigma\left(t_{n}\right)\right) \in \Sigma$

p. 174

line 15 from the bottom
read "by universal instantiation, $\mathrm{M} \vDash \mathrm{B}\left(\mathrm{v}_{i} / x\right)$ " for "if $\sigma(x)=\mathrm{v}_{i}$, then $\sigma \models \mathrm{B}(x)$ "

p. 182

line 5 from the bottom read " \exists " for " ε ".

p. 423

In Theorem 1 delete part (f) which is wrong and not needed.

p. 424

line 9 from the bottom read " Σ " for " Γ ".

p. 424

line 7 from the bottom to the end of the page should read:
$\mathrm{U}=\left\{\mathrm{c}_{i}\right.$: for some $\left.x, \exists x\left(x \equiv \mathrm{c}_{i}\right) \in \Sigma\right\} \cup\left\{\mathrm{v}_{i}:\right.$ for some $\left.x, \exists x\left(x \equiv \mathrm{v}_{i}\right) \in \Sigma\right\}$
Assignments of references:
For every σ and every $x, \sigma(x)$ is defined, and the collection of such σ is complete.
For every atomic name d:
$\sigma(d) \downarrow$ iff $d \in U$. If $\sigma(d)$ is defined, then $\sigma(d)=d$.
Evaluation of the equality predicate:

$$
\begin{array}{r}
v_{\sigma} \vDash \mathrm{t} \equiv \mathrm{u} \text { iff } \sigma(\mathrm{t})=\mathrm{c} \text { and } \sigma(\mathrm{u})=\mathrm{d}, \text { and }(\mathrm{c} \equiv \mathrm{~d}) \in \Sigma \\
\text { or both are undefined and }(\mathrm{t} \equiv \mathrm{u}) \in \Sigma
\end{array}
$$

Valuations of atomic wffs other than the equality predicate:
G iven $\mathrm{A}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right)$ and σ, let $\mathrm{y}_{1}, \ldots, \mathrm{y}_{n}$ be a list of all the variables appearing in A , and let $\sigma\left(y_{i}\right)=\mathrm{d}_{i}$. L et $\left.\mathrm{At}_{1}, \ldots, \mathrm{t}_{n}\right)\left[\mathrm{d}_{i} \mid y_{i}\right]$ de note A with each y_{i} replaced by d_{i}. Then:

$$
v_{\sigma} \models \mathrm{A}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right) \text { iff } \mathrm{A}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right)\left[\mathrm{d}_{i} \mid y_{i}\right] \in \Sigma .
$$

p. 429

The second and third inferences at the top of the page are invalid, not valid.

p. 431-432

The following conditions replace comparable parts or are added to the text.
Extensionality condition for atomic applications of terms For any atomic terms t_{1}, \ldots, t_{n} and u_{1}, \ldots, u_{n}, if for all $i, \sigma\left(t_{i}\right) \downarrow=\tau\left(u_{i}\right) \downarrow$, then:
either both $\sigma\left(f\left(t_{1}, \ldots, t_{n}\right)\right)$ and $\tau\left(f\left(u_{1}, \ldots, u_{n}\right)\right)$ are undefined, or both are defined and are the same object.

Applications of functions extended to all terms

Terms of depth 0: These are given.
Terms of depth 1: These are given satisfying non-referring as default and the extensionality condition for atomic applications.

Terms of depth $m+1$ for $m>0$:
Applications of functions for terms of depth $\leq m$ are given.
For $f\left(t_{1}, \ldots, t_{n}\right)$ a term of depth $m+1$:
If for some $i, \sigma\left(t_{i}\right) \downarrow$, then $\sigma\left(f\left(t_{1}, \ldots, t_{n}\right)\right) \downarrow$.
If for all $i, \sigma\left(t_{i}\right) \downarrow$, let z_{1}, \ldots, z_{n} be the first variables not appearing in $f\left(t_{1}, \ldots, t_{n}\right)$. Let τ be the assignment of references that differs from σ only in that for all $i, \tau\left(z_{i}\right)=\sigma\left(t_{i}\right)$. Then:

$$
\sigma\left(f\left(t_{1}, \ldots, t_{n}\right)\right) \approx \tau\left(f\left(z_{1}, \ldots, z_{n}\right)\right)
$$

The extensionality of atomic predications If A is an atomic wff, and σ and τ are any assignment of references, and t_{1}, \ldots, t_{n} are all the atomic terms in A, and u_{1}, \ldots, u_{n} are any terms such that for each i either $\sigma\left(t_{i}\right)=\tau\left(u_{i}\right)$ or $\vDash u_{i} \equiv t_{i}$, then $v_{\sigma} \vDash A\left(t_{1}, \ldots, t_{n}\right)$ iff $v_{\tau} \vDash A\left(u_{1}\left|t_{1}, \ldots, u_{n}\right| t_{n}\right)$.

Evaluation of the universal quantifier with partial functions

$v_{\sigma} \vDash \forall x A(x)$ iff for every term t that is either x or contains no variable that appears in $A(x)$, for every τ that differs from σ at most in what it assigns $x, v_{\tau} \vDash A(t \mid x)$

