
Questioning Articles of Faith
A re-creation of the history and theology of arithmetic

David Isles1

Inasmuch as many have taken in hand to set in order a narrative of those
things which are most surely believed among us, . . . , it seemed good to
me also . . . to write to you an orderly account.

Luke 1:1,3 Bible (New King James Version)  

There are three parts to this article. The first is a very brief sketch of the
historical development of numerical notations and arithmetic operations 
on them.  Like many such sketches it reinterprets many features of this
development and omits most of them.  It corresponds to the sort of folk
history that St. Luke may have depended on as he tried to write a seamless
biography of an individual whose living memory was even then being lost. 

Second is an equally brief sketch of an ideological reworking of this
historical material into a coherent intellectual narration.  St. Luke did not
simply write a biography, he wrote a story which gained coherence because
of its theology.

Finally, some of the assumptions of this ideology are criticized and
alternative approaches suggested.

A re-creation of the history
People counted, people tallied.  Over time civilizations developed many notational
systems to record these counts using a variety of media: knots on string,
pictographs on stone, marks on paper, beads on an abacus, electric charges in
computers.  Among the simplest of these notational systems were the numerals: 
| ,  | | ,  | | | ,  . . .  . Simultaneously a variety of computations using these notations
evolved.  At first they were carried out with stones, boards, beads, etc. but later
(especially after the invention of positional notation) done directly with the
notations themselves.2  Eventually these computations were done on paper and
involved notations similar to the following set.

Definition 1   The exponential numerical terms consist of the collection of terms
built from  | , + (addition), * (multiplication), and ^ (exponentiation) together with
left and right parentheses. 

1  Submitted to the Forum by Richard L. Epstein.  Refereed and accepted for publication by
Richard L. Epstein and Walter A. Carnielli.
2  The Mayans had positional notation together with a zero (see Ifrah, 1985,  pp. 397-428). 
I have not been able to learn whether they developed algorithms for manipulating these notations
analogous to our paper based algorithms for addition and multiplication.
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Examples of this definition include: | |,  ( | | + | | | ), ( | | + | | | ) * ( | | | ), 
( ( | | ^ | | | ) + ( | | ) ) * ( | | + | ).

Many algorithms for doing addition, multiplication, and exponentiation were
developed over time.  A contemporary version of these is the following set of
rewriting rules.

Definition 2   Let A, B, C, and D be exponential numerical terms.
a.  We define a notion A ~ B, read as A immediately reduces to B:

a1. A ~ A

a2. If A ~ C and B ~ D, then A | ~ C |,  and  (A + B)~ (C + D),  and 
(A * B) ~ (C * D), and  (A ^ B) ~ (C ^ D).

a3. If A ~ C and B ~ D, then 

(A + | ) ~ (C | ) (A + (B | ) ) ~ ((C + D) | )

(A * | ) ~ C A * (B | ) ~ (C * D) + C

(A^ | ) ~ C (A^ (B | )) ~ (C^D) * C

b.  We define A > B, read as A reduces to B, as the transitive closure of ~.

Whether one uses these rules or other algorithms, it sometimes happens that
two superficially different exponential numerical terms reduce to a common term. 

Example   (|| ^ ||) > (|| + ||)  and  || * || >  || + ||.

Analysis   | | > | | | | > | |                                   

| | > | |                | > | ( | | ^ |) > | |    | | > | | | | > | |       | > | (| | * |) > | |   | | > |                                                                                                                                

(| | ^ | | ) > (| | ^ |) * | |    > (| | ^ |) * | | > | | * | |    | | * | | > ( | | * |) + | |    > (| | * |) + | | > | | + | |

In such a case it seems natural to consider such terms as equivalent.  In
contemporary terminology we have the following definition.

Definition 3   If A and B are exponential numerical terms then A = B means that
there is a term S (not necessarily a numeral) such that A > S and B > S.

The notation “=” is used for this relation because a variant of the proof of
the Church-Rosser Theorem for lambda terms guarantees that if A = B and B = C 
(that is, there are terms T and S so that both A > T and B > T and also B > S and
C > S) then A = C (that is, there is a term V so that A > V and C > V).3

Such considerations  probably led people to regard the numerals as the basic
numerical notations, while taking the elaboration to exponential numerical terms
as just a notational convenience.  Moreover, this belief was strengthened by the
fact that every time the complete reduction of a term was achieved, the result was 

3  The Church-Rosser argument establishes the “diamond property”:  If B > T and B > S then
there is a term V so that T > V and S > V (from which it follows that A > T > V and C > S > V).
The diamond property for the relation > follows from that for the relation ~, and the diamond
property for ~ is established by induction on the sum of the depths of the derivation trees of B > T
and B > S.  This proof was due to Tait and Martin-Löf; see Barendregt, 1977, p. 1102.
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seen to be a numeral.  When mathematical sophistication had reached a point
where people started asking questions about the underlying structures involved in
doing arithmetic, this attitude led to a revised view of what one was actually
dealing with.

An orderly account

The Creed   The basic entities are the numerals (or, perhaps, abstract quantities,
“natural numbers”, which are generated in a manner parallel to the numerals) plus
(total) functions on these numerals.

From this standpoint, therefore, the exponential numerical terms are merely
names indicating the application of these functions (addition, multiplication, and
exponentiation) to the numerals.  In order to develop the consequences of this
Creed in a systematic way, in particular in order to establish the existence of these
functions, a logical narrative was devised.  This was framed using classical logic
within a first-order system that included as predicates x = y, A(x, y, z),  
M(x, y, z) and  P(x, y, z) (which could be interpreted over the exponential
numerical terms as x = y, x + y = z, x * y = z, and x ^ y = z.)  The
narrative took the form of proofs of statements about these relations from the
following assumptions:

E1 (x) (x = x)

E2 (x) (y) (x = y →  y = x)     

E3 (x) (y) (z) (x = y & y = z →  x = z)

E4 (x) (y) (x = y →  x | = y | )

E5 (x) ~ (x | = | )

E6  If Q stands for any of the three predicates A, M, or P :
(x) (y) (z) (w) (x = y → ( (Q(x, z, w) →  Q(y, z, w)) & 
    (Q(z, x, w) →  Q(z, y, w)) & (Q(z, w, x) →  Q(z, w, y) ) )  

F1 (x) (y) ( x | = y | →  x = y)    

F2 If Q stands for any of the three predicates A, M, or P : 
(x) (y) (z) (w) (Q(z, w, x) & Q(z, w, y) →  x = y)

R1 (x) A(x, |, x |)

R2 (x) (y) (z) (A(x, y, z) →  A(x, y |, z | ) )

R3 (x) M(x, | , x)

R4 (x) (y) (z) (w) ( M(x, y, z) & A(z, x, w) →  M(x, y | , w) )

R5 (x) P(x, | , x)

R6 (x) (y) (z) (w) (P(x, y, z) & M(z, x, w) →  P(x, y | , w) )
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Observe that all of these axioms when interpreted as described earlier are
true of the numerals (but are also true of the exponential numerical notations). 

In order to complete the narrative, it is only necessary to prove:

(x) (y) (∃ z) A(x, y, z)

(x) (y) (∃ z) M(x, y, z)

(x) (y) (∃ z) P(x, y, z)

That is, we must show that the numerals are closed under these relations and that
they therefore represent total functions on the numerals.  With the stated
interpretation, the exponential numerical notations are trivially closed under these
relations.  For example, if t and s are any two such terms then t ^ s = t ^ s and
so (x) (y) (∃ z) P(x, y, z).  But in order to prove that the numerals are closed
with respect to these relations another proof technique, mathematical induction,
must be used.  Once this is introduced, the standard proofs for closure of these
relations can be argued.  In the following sketches of natural deduction
derivations, a, b, c, and d are free variables.

I.  (x) ( y) (∃ z)  A(x, y, z)
1. From Axiom R1, A(a, | , a | ).  Hence, (∃ z ) A(a, | , z).
2. Assume (#1) A(a, b, c).  From Axiom R2 then follows A(a, b |, c | )

and so (∃ z) A(a, b |, z).
3. Assume (#2) (∃ z ) A(a, b, z ) and cancel assumption (#1). 

Thus we have established (∃ z ) (A(a, b, z ) →  (∃ z ) A(a, b|, z)). 
Using induction on b, we conclude (x) (y) (∃ z) A(x, y, z).

II.  (x) (y) (∃ z) M(x, y, z)
1. Axiom R3 gives M(a, | , a).  Hence, (∃ z ) M(a, | , z).
2. Assume (#1) M(a, b, c) and (#2) A(c, b, d).  Then from Axiom R4 

we conclude M(a, b |, d ) and so (∃ z) M(a, b |, z ).  From the 
conclusion to Proof I we have (∃ z ) A(c, b, z) and so we can 
cancel assumption (#2).

3. Assume (#3) (∃ z ) M(a, b, z ) and cancel assumption (#1).  
Thus we have established (∃ z ) M(a, b, z ) →  (∃ z ) M(a, b |, z).  
Using induction on b, we conclude (x) (y) (∃ z) M(x, y, z).

III.  (x) (y) (∃ z) P(x, y, z)
(Notice that this proof is parallel in form to Proof II.)

1. Axiom R5 gives P(a, | , a ).  Hence, (∃ z ) P(a, | , z).
2. Assume (#1) P(a, b, c) and (#2) M(c, b, d).  Then from Axiom R6 

we conclude P(a, b |, d ) and so (∃ z) P(a, b |, z ).  From the 
conclusion to Proof II we have (∃ z ) M(c, b, z) and so we can 
cancel assumption (#2).

3. Assume (#3) (∃ z ) P(a, b, z ) and cancel assumption (#1).  
Thus we have established (∃ z ) P(a, b, z ) →  (∃ z ) P(a, b |, z).  
Using induction on b, we conclude (x) (y) (∃ z) P(x, y, z).
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So our proofs have justified our faith: 

We can restrict notations to the numerals (except for “practical”
calculations) and recover addition, multiplication, and exponentiation
as functions on numerals.4

Being logical locally
Anyone who criticizes the preceding claim faces the challenge of explaining
where any or all of arguments I, II, and III fail, given that the axioms are admitted
to hold of the numerals and the inference rules preserve truth.  The critique which
follows focuses on two issues: first, the role of mathematical induction, and
second, and more basic, the semantics which are being used.

Even if one grants that the logical rules preserve truth, it seems to me that
we are entitled to some evidence that the same is always true of induction.  After
all, mathematical induction is the first inference rule which involves a potentially
infinite number of steps.  The usual justification—indeed, to my knowledge, the
only justification offered—is to visualize this inference as if it were a potentially
infinite number of modus ponens steps.  This is not much of a clarification.  I am
not alone in my skepticism.  Various people including Edward Nelson, 1986, p. 1
have argued that unrestricted use of induction can produce false results.  In my
opinion, one need not go far to find such a result: the belief that, for example, 
2^n  is equal to a numeral for any numeral n forces thinkers about mathematical
philosophy to go into contortions to make sense out of what seems to be false.5

One way to justify mathematical induction is to provide independent
evidence that the results it produces are correct.  This seems impossible in the
case of Proofs I, II, and III as long as we assume that the reference range of the
variables involved is the numerals.  That is because then to verify the conclusions
of these derivations we would have to know that the numerals are closed,
respectively, under addition, multiplication, and exponentiation and this is just the
knowledge that the putative “proofs” are supposed to supply.

Need we make this assumption?  These proofs are carried out in first-order
logic using certain inference rules.  What is of logical importance about these
rules (I believe) is that they preserve truth, i.e., they are sound.  But in order to
preserve truth as one passes from the premise of an inference to its conclusion,
you do not need to assume that the ranges of all the variables are the same; you
need only assume that the ranges are related appropriately.  The assumption that
the variables all have the same range is a semantic assumption, not a logical one.  
4  Although other more set theoretic proofs of the closures of these relations exist, the first-order
ones presented here are essentially the arguments used to convince mathematicians of the fact.
5  Certainly it is “false” if one considers the time and space required to evaluate to a numeral for
an (abbreviated) expression like 2^65536.  Underlying my skepticism is a (rather ill-defined)
belief that computations such as those represented by the exponential numerical notations plus the
reduction rules (Definition 2) are more similar to, say, a gear system than to a mathematically
defined object.  And although one might have a mathematical theory which is descriptive of the
gear system, it could not be constitutive of it.  The same holds true of the computation: At best one
can hope to find a mathematical model of it, and any model is bound to have its flaws.
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For example, suppose we are working in a natural deduction system and have an
occurrence of Universal Elimination:

 (x) A(x)                 
    A(t)

One need only assume that the value(s) of the term t are a subset of the values
assumed by the variable x.

Or suppose one wants to ensure that Implication Elimination preserves truth:

  A1      A2 →  B where A1, A2 differ perhaps only in the naming                            
         B of their bound variables

Then it is sufficient  to demand that the ranges of corresponding variables be the
same.  Of course this means that the range of a particular occurrence of a variable
may change as the proof of which it is a part enlarges and that the interpretation of
the formulas in a proof may depend on the form of that proof.  This is unconven-
tional in logic, but surely not in other forms of narration where the reference of a
pronoun may change as the narrative unfolds.6

In any case, suppose we look at Proofs I, II, and III as being arguments
about the exponential numerical notations and not just about numerals.  After all,
the axioms are true of these notations and induction should also be a truth-
preserving method of inference as long as the variable of induction is presumed to
range over the numerals.  Looking at  Proofs I, II, and III in this way, we see
something curious.  Tracing the variable identifications and substitutions in 
Proof I of (x1) (y1) (∃ z1) A(x1, y1, z1), it turns out that the ranges of variables
x1 and z1 can be exponential numerical terms although the range of the induction
variable y1 must be restricted to numerals.  Because of substitutions that occur in
Proof II, the range of x2 (as well as the range of the induction variable y2) in the
formula (x2) (y2) (∃ z2) M(x2, y2, z2) must be restricted to the numerals
whereas z2 can range over the exponential numerical terms.  In addition, although
Proof II uses the conclusion (x1) (y1) (∃ z1 ) A(x1, y1, z1 ) of Proof I, the
range of the variable z1 (and x1) remains the same.  Because the range of z1 and
z2 can be notations, the conclusions of Proofs I and II are obviously true.  So we
obtain justification for the use of mathematical induction in these cases.  But when
we repeat the argument a third time in Proof III, matters change.  Here when the 
6  This was certainly my experience as I read the description of soirees in War and Peace and
frequently found that the individual that I’d assumed was being referred to by “he” or “she” in
fact, as the paragraph developed, turned out to be another.  Such reference shifts either by the
reader or by characters in the story occur all the time in mysteries.  For example, at the end of the
Sherlock Holmes story “Silver Blaze”,  Dr. Watson and Colonel Ross are made to realize that the
murderer they’d been seeking was not a man but, as Holmes pointed out, a horse.  In such cases
there is a complete shift of the referent.  In the case of the word “electors” as used in Article 1,
Section 1 of the U.S. Constitution, the reference range has expanded from the collection of
propertied, free-born white males in 1787 to its contemporary wider inclusiveness.  In Proofs I, II,
and III there is a narrowing of the range of reference of certain variables.  Finally, the referent of
the term “rogue state” as used by the present United States administration changes so frequently
that it is difficult to determine it at all.
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conclusion (x2) (y2) (∃ z2) M(x2, y2, z2) of Proof II is used, the substitutions
and identifications occurring force the range of z2 (as well as the ranges of 
x2, y2 and x1, z1) to be numerals.  That is, Proof III requires as an assumption
that the numerals be closed under multiplication (and addition).  However, this is
not what Proof II (or I) has established.  So it seems that Proof III uses unjustified
assumptions to derive (x3) (y3) (∃ z3 ) P(x3, y3, z3)  (where also the ranges 
of x3, y3, z3 must be numerals.)7  Because of the proof’s structure, the only
interpretation for the variables in Proof III is the numerals, and these we do not
know a priori to be closed under exponentiation.  Thus, we have no independent
justification for the use of induction here.

As another example consider the theorem:

(x) ( (x = | ) ∨  (∃ y) (x = y | ) )

This can be proved by induction on x whose range therefore is the numerals.
Then if one derived (x) (y) (∃ z) ( M(x, y, z) & ((z = 1) ∨  (∃ w) (z = w | )) )
from the theorem (x) (y) (∃ z) M(x, y, z), the range of z is also forced to be
the numerals. 

A slightly different version of the same phenomenon occurs in the proof,
given in Kleene, 1971 that exponentiation is numeralwise expressible in
elementary number theory.  The essential step is the proof by induction on y of
the formula (y) (∃ x) F(y, x) which expresses the existence of the common
multiple x of the numbers in the sequence 1, 2, 3, . . . , y .8  Due to
substitutions which occur during its proof, the range of x must contain arbitrarily
large multiples of multiplicative numerical terms (for example, (. . . ((( | | * | | ) * | | )

* . . . * | | )) and, simultaneously, the range of x is a subset of the numerals.  That
is, the numerals must be closed under exponentiation.9

Conclusion
Although we can agree that the logical inference rules preserve truth,
mathematical induction (at least in the contexts illustrated) seems to be something
different: It introduces an extralogical element by limiting the possible range of
the induction variable.  And this semantic restriction can then propagate through
the derivation.  This is illustrated in the Proof of III where the third use of
induction results in a derivation from assumptions which have not been proved
but which must, apparently, be taken on faith.  But if one is of little faith, as I tend
to be, then the conclusion that the numerals are closed under exponentiation
does not follow.10

7  For a more detailed exposition of this argument, see Isles, 1992.  Some consequences of the
idea of derivation-determined interpretations are spelled out in Isles, 1994.
8  Kleene, 1971, formal theorem 157, p. 192.
9  See Isles, 1992, p. 475 for details.
10  Although my skepticism on this point is uncommon, similar opinions have been expressed by
other authors; see, for example, Bernays, 1983, Van Dantzig, 1956, and Nelson, 1986.
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Note added in proof

The argument above suggests that the usual understanding of arithmetic as “natural
numbers” + “arithmetic functions” may be misleading.  We are dealing with a certain set
of notations plus rewriting rules (modeled, for example, by Definitions 1, 2, and 3): These
are the basic entities we use when dealing with or thinking about “natural numbers”.
These terms and operations are natural phenomena to be investigated using whatever
tools we have at our disposal: experimental or theoretical.

For example, can we show that every (~)-reduction sequence of a term terminated
(necessarily in a numeral) by using induction on the depth of a term (considered as a
tree)?  To do this it seems that we must establish (via induction, how else?) that every
term of the form (n + m), (n * m), or (n ^ m), where n and m are numerals, reduces
to a numeral.  This would mean showing that the number of steps in a (~)-reduction
sequence is a numeral, i.e., that there are procedures A(n, m), M(n, m), and P(n, m)
that, given numerals n and m, produce exponential numeral terms that:  (i) equal a
numeral and (ii) bound the number of steps in the relevant (~)-reduction sequence.
Simple calculations show that for terms of the form (n + m), (n * m), and (n^ m)
where n and m are numerals, such algorithms are: 

A( n, m) =  m
M(n, m) =  n * (m –1) + m
P(n, m) =  (n ^ m) + (n * (m – 2)) ) + m

Here m –1 and m – 2 are abbreviations.  Now because A(n, m) < (n + m) and 
M(n, m) < (n * m), where m < n, if A( n, m) and M(n, m) have been shown to
be numerals, then we have some assurance that (n + m) and (n * m) will reduce to
numerals.  Perhaps one could describe this as saying that +  and * are “predicative”
operations.  But we have no assurance in the case of (n ^ m) because  (n^ m) < 
P(n, m).  Whether one can find a different bounding function P(n, m) such that 
P(n, m) < (n ^ m) is unknown to me.
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